News

Superconducting circuits get contextual!

One of the biggest experimental efforts of our lab came finally to the end. We used all the advances we developed for superconducting circuits to probe quantum conetxtuality first time for superconducting circuits. Contextuality is one of the most fundamental properties of quantum mechanics, distinguishing it from classical physics without a need for nonlocality or entanglement. It is also a critical resource for exponential speedup in universal surface-code quantum computing. Our result is the first experiment violating a noncontextuality inequality with an indivisible system where entanglement cannot be defined which also addresses all known major loopholes, such as the detection, compatibility and individual-existence loopholes. Violating noncontextuality with superconducting circuits, a leading candidate for implementing surface-code quantum computing, comprises an important conceptual milestone in demonstrating their suitability for quantum technological applications.