# Dr. Arkady Fedorov

Dr. Arkady Fedorov completed his PhD student at Clarkson University, US in 2005. His research work was primarily on theoretical aspects of quantum information science and decoherence in solid state systems. He was then appointed a postdoctoral fellow KIT, Gemany working on a theory of superconducting quantum circuits in application to quantum computing and quantum optics phenomena. In 2007-2010 he worked in TU Delft, The Netherlands conducting experiments with superconducting flux qubits. Later on he became a research scientist in ETH Zurich to continue research in the area of superconducting quantum devices. Starting January 2013 he is a group leader at The University of Queensland. His group studies quantum phenonomena in systems consisting of superconducting artificial atoms, microwave resonators and mechanical oscillators.

### 2017

2017

, Phys. Rev. A, 96, pp. 53817

Recent theoretical studies of a pair of atoms in a 1D waveguide find that the system responds asymmetrically to incident fields from opposing directions at low powers. Since there is no explicit time-reversal symmetry breaking elements in the device, this has caused some debate. Here we show that the asymmetry arises from the formation of a quasi-dark-state of the two atoms, which saturates at extremely low power. In this case the nonlinear saturability explicitly breaks the assumptions of the Lorentz reciprocity theorem. Moreover, we show that the statistics of the output field from the driven system can be explained by a very simple stochastic mirror model and that at steady state, the two atoms and the local field are driven to an entangled, tripartite |W⟩ state. Because of this, we argue that the device is better understood as a saturable Yagi-Uda antenna, a distributed system of differentially-tuned dipoles that couples asymmetrically to external fields.

2017

, Physical Review Letters, 119, pp. 240501

We experimentally realize a quantum random number generator (QRNG) with randomness of each generated number certified by the Kochen-Specker theorem. Employing this novel certification scheme eliminates the necessity for input seed random numbers and lifts the non-locality requirement for the certified QRNG. Implementation on the base of superconducting qubits allows achieving a bit rate of 25 kBit/s, two orders of magnitude higher than previously reported certified QRNGs. These improvements make our result a major step towards realization a practical certified quantum QRNG with implications for digital security and modelling algorithms.

2017

, arXiv:1706.05829

We present a technique to measure the transfer function of a control line using a qubit as a vector network analyzer. Our method requires coupling the line under test to the the longitudinal component of the Hamiltonian of the qubit and the ability to induce Rabi oscillations through simultaneous driving of the transversal component. We used this technique to characterize the 'flux' control of a superconducting Transmon qubit in the range of 8 to 400\,MHz. Our method can be used for the qubit 'flux' line calibration to increase the fidelity of entangling gates for the quantum processor. The qubit can be also used as a microscopic probe of the electro-magnetic fields on a chip.

### 2016

2016

, Phys. Rev. Appl., 6, pp. 14014

The ability to determine whether a multi-level quantum system is in a certain state while preserving quantum coherence between all orthorgonal states is necessary to realize binary-outcome compatible measurements which are, in turn, a prerequisite for testing the contextuality of quantum mechanics. In this paper, we use a three-level superconducting system (a qutrit) coupled to a microwave cavity to explore different regimes of quantum measurement. In particular, we engineer the dispersive shifts of the cavity frequency to be identical for the first and second excited states of the qutrit which allows us to realize a strong projective binary-outcome measurement onto its ground state with a fidelity of 94.3%. Complemented with standard microwave control and low-noise parametric amplification, this scheme can be used to create sets of compatible measurements to reveal the contextual nature of superconducting circuits.

2016

, EPJ Quantum Technol., 3, 1, pp. 1-6

Three-dimensional (3D) microwave cavities with embedded superconducting quantum bits (qubits), provide a popular and versatile platform for quantum information processing and hybrid quantum systems. A current issue that has arisen is that 3D superconducting cavities do not permit magnetic field control of qubits embedded in these cavities. In contrast, microwave cavities made of normal metals can be transparent to magnetic fields, but experience a much lower quality factor, which negates many of the advantages of the 3D architecture. Here we presented measurements of a device that bridges a gap between these two types of cavities with magnetic field control and an order of magnitude higher quality factor compared to all previously tested copper cavities. An added benefit to that our hybrid cavity possesses is that it also provides an improved thermal link to the sample that superconducting cavities alone cannot provide. A large improvement in quality factor and magnetic field control makes this 3D hybrid cavity an attractive new platform for circuit quantum electrodynamics experiments.

2016

, Nature Communications, 7, pp. 12930

Contextuality is one of the most fundamental properties of quantum mechanics, distinguishing it from classical physics without a need for nonlocality or entanglement. It is also a critical resource for exponential speedup in universal surface-code quantum computing. Our result is the first experiment violating a noncontextuality inequality with an indivisible system where entanglement cannot be defined which also addresses all known major loopholes, such as the detection, compatibility and individual-existence loopholes. Violating noncontextuality with superconducting circuits, a leading candidate for implementing surface-code quantum computing, comprises an important conceptual milestone in demonstrating their suitability for quantum technological applications.

### 2015

2015

, Phys. Rev. B, 92, pp. 224304

The paper theoretically studies effects of the higher non linearities originated from a Josephson junction on the Josephson parametric amplifier (JPA). The results help to understand the gain saturation and reveal some of the effects which were not identified in the previous theoretical studies. Some interesting stipulations on the possible new regimes of the JPA are also deiscussed.

### 2013

2013

, Science, 342, 6165, pp. 1494-1496

We use two superconducting qubits in an open one-dimensional transmission line to study unprecedently strong photon-mediated interactions. Also at arxiv.org.

2013

, Physical Review A, 88, 4

We study the collective effects that emerge in waveguide quantum electrodynamics where several (artificial) atoms are coupled to a one-dimensional superconducting transmission line.

## Pages

### The ARC Centre of Excellence for Engineered Quantum Systems

This Centre of Excellence seeks to initiate the Quantum Era in the 21st century by engineering designer quantum systems.