Error message

Deprecated function: The each() function is deprecated. This message will be suppressed on further calls in remember_me_form_alter() (line 78 of /home/equsorg/public_sqd/sites/all/modules/remember_me/remember_me.module).

qutrit

Qutrit under control

Check out what one can do with a sperconducting qutrit: create quantum states, perform quantum tomography of these states and even quantum process tomography for the measurement. More importantly one can even probe one level of the qutrit while not disturbing two others.

The ability to determine whether a multi-level quantum system is in a certain state while preserving quantum coherence between all orthorgonal states is necessary to realize binary-outcome compatible measurements which are, in turn, a prerequisite for testing the contextuality of quantum mechanics. In this paper, we use a three-level superconducting system (a qutrit) coupled to a microwave cavity to explore different regimes of quantum measurement. In particular, we engineer the dispersive shifts of the cavity frequency to be identical for the first and second excited states of the qutrit which allows us to realize a strong projective binary-outcome measurement onto its ground state with a fidelity of 94.3%. Complemented with standard microwave control and low-noise parametric amplification, this scheme can be used to create sets of compatible measurements to reveal the contextual nature of superconducting circuits. 

Subscribe to RSS - qutrit